Current Experiences with Mussel Mitigation Cultures

Jens Kjerulf Petersen Danish Shellfish Centre Nykøbing Mors, Denmark

Blue mussels are basically food

But mussels can be more than food

	Muslingekød				Skaller			
	TV_{kod}	С	Ν	Р	TV_{skal}	С	Ν	Р
Muslinger dyrket på langliner								
Estimat	90	39	8,5	0,5	173	5,7	1,7	0,1
Min.	60	19	4,2	0,4	154	5,1	1,5	0,1
Max.	150	65	16,5	0,9	192	6,3	1,9	0,1
Fiskede muslinger								
Estimat	50	22	4,7	0,3	173	5,7	1,7	0,1
Min.	35	11	2,5	0,2	154	5,1	1,5	0,1
Max.	70	35	7,7	0,4	192	6,3	1,9	0,1

 1 t of live harvested blue mussels from a culture unit contains approx. 10 kg N og 0,5 kg P
 Culture units can produce at least 300 t pr year

1 2.5

Mussel mitigation production

- Assuming removal of approx. 10 kg N and 0,5 kg P per tonnes live mussels; and
- Expecting a mitigation production of 800-1200 t mussels per standard culture unit
- This can be translated into actual no. units in Danish estuaries according to reduction requirements:
 - Skive, Lovns, Risgaarde: 34 units (339 t N)
 - Ringkøbing Fjord: 61 units (610 t N)
 - Roskilde fjord + Isefjord: 23 units (234 t N)
 - o Limfjorden: 377 units (3770 t N)

Green mussels

- Positive impact:
 Removal of nutrients
 "Ringkøbing" syndrome
 Reef effect
- Negative impact:
 - Increased sedimentation below culture units
 - Food web interaction
 - Visual pollution

"Ringkøbing syndrome"

"Ringkøbing" syndrome in Skive Fjord

Reef effect

Visual pollution

Sedimentation - effects

Sedimentation - effects

Carlsson et al 2009

Benthic fauna

Food web interaction

Food web interaction

MuMiHus 2010-13

- Danish Shellfish Centre
- National Environmental Research Institute
- DTU National Institute of Aquatic Resources
- University of Southern Denmark

UNIVERSITYOFSOUTHERNDENMARK.DK

- Institute of Food and Resource Economics, Taihoro Nukurangi University of Copenhagen
- Bolding & Burchard
- Dalhousie University
- NIWA New Zealand
- Bedford Oceanographic Institute

DTU Aqua Institut for Akvatiske Ressourcer

BOLDING & BURCHARD

HOUSIE

Inspiring Minds

N-LWA

MuMiHus work packages

- Full scale test of culture methods
- Environmental impact of mitigation culture
- Modelling of mitigation culture in Skive Fjord
- Growth limitations in blue mussels the national perspective
- Management of mussel cultures as a mitigation tool
- Content of pollutants
- Stakeholder consultations

kive Fjord

1000

er

-3 m, 40-60 cm

the set of the state of the set of the set of the

Culture tests

-Growth media -2 types of woven nylon band -Xplora ladders -Aqua loop -Depth of droppers -2 or 3 m -Distance between loops -40 or 60 cm between droppers -Time for harvest -November, March, May

Biomass development

In Skive Fjord we can produce 900-1000 t in 6-12 months

Different growth media

Other issues

- Growth period vs. maintenance costs
- ice cover
- production method incl. harvest method
- predators

Depletion-micro scale

Skive Fjord – depletion

Skive Fjord – modelling

Costs - first calculations

Harvest in November-December (900-1000 t): •1,10 DKK/kg mussels (incl. preliminary expenses and running costs) equals 110 DKK/kg N

Including the "Ringkøbing-syndrome" 10-15 kr/kg N

Potential cost reductions:

Increased productivity (e.g. higher production volume per unit, optimization through large scale production)
Introduction of other mitigation crops (sea weed)
Payment for the mussels

Next steps

- More realistic estimates of total costs including employment effect in rural districts
- Cost effective use of the mussels:
 - human consumption: canned mussels
 - feed for husbandry: separation of shell and meat
 - fertilizer: problems with EU regulations
- Optimization of production
 - upscaling by production on several units
 - enhanced production pr area
 - defining optimal harvest time
 - co-production with other mitigation crops
- Possibilities for integration of existing mussel production

Considerations

- Is mitigation cultures of mussels a way of disguising the real problem?
- What is the proper use of "green"-mussels?
- How to manage mitigation cultures is it through tradable permits?
- What is the cumulative ecological impact of mitigation cultures?

